
BTech Project Final Report

Shelley Lowe
4950257
slow056

2011

Abstract

This report explains the work done for the final year BTech project at Kiwi-
plan. It is a database based project implemented in Java. The main goal of
the project is to extend an existing Distributed Service Profiler to integrate
the database layer to intercept queries made to a database.

The profiler is used by developers working for Kiwiplan to help them
analyse and find bottlenecks in their code. The profiler currently used by
Kiwiplan developers only analyses service calls made between various ser-
vices, not within. Queries to the database are not specified, even though the
time taken for those queries are included in the information returned. This
makes it difficult to find problem areas and information about database calls
without developers manually going through the log files.

I have done a lot of research to get a better understanding the current
profiler and find what tools I can use to complete this project. Research into
Hibernate, Interceptors and logging has been done and explained in this re-
port. Since the End of Semester report, I have done a lot more research into
how the Distributed Service Profiler works and in particular, how MBeans
work and how the profiler uses them to communicate with the various ser-
vices.

Before going into the actual implementation of the profiler extension, I
created some smaller standalone applications for testing and increasing my
knowledge on the different frameworks. This included a simple Interceptor
which I tested on a simple MySQL database. I also needed to create some
new classes in order to achieve the goals of this project as well as modify
some existing source code to make it possible to integrate the new compo-
nents.

The system will still need to be improved and this will be included my
plan of the future work.

ii

Contents

Abstract iv

1 Project Description 1
1.1 Problem Overview and Motivation 1
1.2 Company Information . 2

2 Distributed Service Profiler 3
2.1 Background Information . 3
2.2 Related Work . 4

3 Development Plan 6
3.1 Solution Overview . 6
3.2 Requirements . 6
3.3 Architecture . 7
3.4 User Interaction . 8

4 Research 10
4.1 Distributed Service Profiler . 10
4.2 Hibernate . 11
4.3 Hibernate Interceptor . 11
4.4 EmptyInterceptor . 12
4.5 Hibernate Event System . 13
4.6 Logging . 14
4.7 Hibernate Query Language (HQL) 14
4.8 Java MBeans . 15
4.9 Notifications . 16
4.10 JConsole . 16
4.11 Database Changes Logger . 17
4.12 Jini API . 17
4.13 Maven . 18

iii

5 Design/Implementation 19
5.1 Simple Hibernate Interceptor 19
5.2 PersistenceWrapper . 20
5.3 LoggerInterceptor for Profiler 21

5.3.1 Original . 21
5.3.2 Revised . 23

5.4 LoggerManager for Profiler . 24
5.4.1 Original . 24
5.4.2 Revised . 26

5.5 JMXClient Modifications . 26
5.6 ClientListener Modifications . 27
5.7 MBeanCreator Modifications 27
5.8 ProfilingManager Modifications 27
5.9 Matching Service Calls with Database Queries 28

6 Final Solution 31
6.1 Solution Overview . 31
6.2 Future Work . 34

7 Knowledge Gained 36
7.1 Knowledge on Various Frameworks/Tools 36
7.2 Development Process/Work Environment 37
7.3 Eclipse Extensions . 37
7.4 Documentation/Commenting 37
7.5 Planning a Solution . 38
7.6 Time Management . 38
7.7 Presentation/Report Skills . 38

8 Conclusion 40
8.1 Summary . 40
8.2 Conclusion . 40
8.3 Acknowledgments . 41

Bibliography 43

iv

Chapter 1

Project Description

This chapter describes the project and the company Kiwiplan.

1.1 Problem Overview and Motivation

Kiwiplan currently uses a Distributed Service Profiler to help analyse their
code. This profiler can check calls and communication on a higher level to
analyse the communication between the various services. An example of
this communication is when a particular service calls another service, which
then queries the database. Currently, developers must manually check the
queries by going through the log files, similar to how they used to go through
the code before using the profiler. The plan is to add database integration
and automate the process to help Kiwiplan be more efficient in creating new
solutions.

The goal of this project is to extend the capabilities of the Java distributed
performance profiling tool by adding integration with the Hibernate ORM
and the database layer. The new profiling tool should intercept calls made
by the services to the database and display this information in the window.
The information extracted from the database queries should be displayed as
an extension to the call tree created by the current profiler.

Most of the services developed by Kiwiplan must communicate with each
other and with the database. Some service methods take a lot of time to pro-
cess, where the majority of these times are queries to the database. Queries to
the database are not specified, even though the time taken for those queries
are included in the service method information returned. This is typically the
bottleneck in the system so Kiwiplan developers would like to know which
methods are taking the longest so they can try to fix these problem areas.

Since the current service profiler only displays the process time under the

1

service method with no information on the database calls, developers must
manually check the database logs. Checking where and what these database
calls are is important to help developers find the bottlenecks and improve
their code.

Without the database integration, the developers can only see which ser-
vice methods are taking the longest. Any number of factors could cause this
delay in computation time. If this information could be extended to display
information on database queries, it would help the developers narrow down
the problem areas and find out whether the long runtime is due to the actual
service method or because of queries to the database.

1.2 Company Information

With over 30 years of expertise in developing software for the corrugating
and packaging industry, Kiwiplan provides systems that deliver the high
standard required for enterprise-wide, fully automatic integrated systems for
Web-enabled supply chain management, sales order management, schedul-
ing and planning, manufacturing, and inventory control.

Kiwiplan first developed over three decades ago by a visionary manage-
ment and engineering team in a corrugated box plant, Kiwiplan’s sophisti-
cated software systems reflect the intimate knowledge of the packaging in-
dustry in every menu and function. Kiwiplan systems exhibit special char-
acteristics and options that only industry participants would be aware of.

With a true global presence, Kiwiplan continues to be the world’s premier
leading provider of software for the corrugated and packaging industry [1].

2

Chapter 2

Distributed Service Profiler

This chapter describes the Distributed Service Profiler currently used by de-
velopers in Kiwiplan.

2.1 Background Information

The initial Distributed Service Profiler was created by another BTech student
a few years ago. It connects to different services by connecting with specified
port numbers. Any methods called by the services to communicate with each
other are intercepted and the method information displayed in the profiler
window.

The calls made by the various services are stored into nodes and a call tree
is built up. This is displayed in the window to show which calls are initiated
by another method. Each node displays the information on the method call.
This information includes the method name, the average time taken for the
method to be completed, the argument and return bytes and the number of
hits (number of times this method was called). The time shown on the nodes
is the average time taken to process; this is calculated from the total number
of hits and time taken.

Leaf nodes are typically where database queries are made and the major-
ity of the time for some longer method calls are due to queries to the database.
These nodes are usually where the time taken to process is much higher. The
methods which take much longer than others is what the developers are in-
terested in as these usually indicate the problem areas of the system. How-
ever, since no information is given on the actual database calls, it is hard for
developers to improve the code without going into the database query logs.

An example of the distributed service profiler running is shown in (Fig-
ure 2.1).

3

Each service is represented with a different colour. Options on the right
of the window allow the user to connect to different services by entering the
desired port number. The call tree is built as calls made between services
are captured and each service method node is coloured in the colour of that
particular service. This colour is dependent on the connections on the right
and extra connections can be added.

2.2 Related Work

A profiling tool is a program typically used in software engineering or com-
puter science for optimization tasks to run a performance analysis on an ap-
plication. ”A profile of the program’s dynamic behaviour under a variety of
inputs is presented by the profiler and represents the program’s behaviour
from invocation to termination” [2]. Profiling is important for understand-
ing program behaviour. It can be a statistical summary of the events caused
by the application, a stream of recorded events or an on-going interaction
with the virtual machine manager.

JProfiler is an award-winning all-in-one Java profiler. JProfiler’s intuitive
GUI helps you find performance bottlenecks, pin down memory leaks and
resolve threading issues [3]. It is a commercial Java profiling tool developed
by ej-techonologies and can be used as a stand-alone application or an Eclipse
plugin to analyse Java code.

Most profilers (like the JProfiler) typically analyse the performance of ap-
plications to find bottlenecks and memory leaks for that particular program.
They usually analyse method calls, memory usage, runtime and frequency
of calls and plenty of other issues to test a program’s performance from start
to termination.

The Distributed Service Profiler used by Kiwiplan analyses performance
on a higher level to check service calls made between programs, not within.

4

Figure 2.1: Distributed Service Profiler Screenshot

5

Chapter 3

Development Plan

This chapter describes the development plan I created which includes speci-
fications and details of the project.

3.1 Solution Overview

The final solution should be an extension of the Distributed Service Pro-
filer which can analyse queries made to the database and display the details
on screen. The current profiler intercepts calls made between services and
shows the details of each method call. This needs to be extended to calls
made by the methods to the database and display their details as well as this
seems to be where most processing time is spent.

3.2 Requirements

The aim of this project is to extend the existing Distributed Service Profiler
so developers are able to find any bottlenecks that exist in the service, which
could be in the method calls between services or calls made to the database.
To achieve this, there are several requirements to be fulfilled.

The first requirement is that the extension must be able to successfully
intercept calls made from the service to the database and extract the neces-
sary information from them. This would obviously need to be done during
runtime such that calls are captured as they are made by the services.

Another requirement is that the captured database calls must be correctly
matched to the service method calls. This is an essential part of the project as
it is an extension of the existing profiler so information from this part must
be integrated with the current method calls. A major part of the motivation
behind this project is that the current profiler displays the service method

6

calls but they are unable to see where the database calls are being made.
With those calls being the ones which take up the most of the runtime, it is
important to see which service methods are making these calls and therefore
find out why some methods take such a long time.

Since this project is an extension of an existing application, it is important
that the overall design remains consistent. This would help to avoid any
errors as well as making it easier for maintaining. The extra implementation
also shouldn’t affect the how the existing profiler runs. It would be extremely
unproductive if the new database interception causes the original method
interception to not work properly.

The intercepted database calls will then need to be displayed as part of
the current method call tree. This would involve first matching the database
call to the original method call, and then creating new nodes to ad to the call
tree.

There were also some extra specifications which could be included to im-
prove the existing profiler. They were optional and suggestions made to pos-
sibly improve the current profiler.

Change current information in call nodes to display Average Time (currently
Time Taken) and Total Time
Highlight the largest argument bytes for each call - show top 3
For long argument lists, show the largest argument (most important)
For database calls, display name, time, size, number of hits,
round-trip-time, SQL/HQL
Order nodes by time - could try ordering nodes or changing the tree edges
of the longest three to a different colour
Search nodes in call tree by method name

3.3 Architecture

The current profiler will be extended and will use an interceptor to log calls
made to the database. This information can then be displayed in the pro-
filer. A Hibernate interceptor can be used to get the information from the
database queries. This can be an extension of the EmptyInterceptor so only
necessary methods are implemented. The profiler will need to configure the
environment to use the Interceptor. The work done by the interceptor should
be done on the server side. Database query information will be passed back
and displayed in the call tree by the profiler.

The Interceptor part of this project will use MBeans to communicate with
the current profiler. This will allow the Distributed Service Profiler to listen

7

for notifications from the Interceptor side. The profiler will act as the agent
and the Interceptor as the server.

3.4 User Interaction

The GUI of the new profiler will be the same as the current profiler. It will
have options to connect to different services and listen for calls made be-
tween the services and display the details on screen. It will also display calls
made to the database from the services in the same window as an extension
to the current call tree. A mock-up of the new GUI is shown in (Figure 3.1)
and (Figure 3.2) which shows how the window will change once a database
query node is selected.

Figure 3.1: GUI Mock-Up Before Selecting Node

Figure 3.2: GUI Mock-Up After Selecting Node

Queries to the database will contain different information compared to

8

calls made between services. There could be extra information on the ta-
bles, attributes, values and other information. This extra information could
be shown on the side of the window, in the space under the different con-
nections (Figure 3.2). There will still be a node for each query which will be
included in the call tree. These database query nodes will include a button
which allows the user to click to show the extra details on the side of the
page.

This is better than including all the information in the call tree as it could
result in the tree becoming too large and database query nodes taking up too
much space. This will keep the tree looking tidy and allow the user to choose
which query they want to look at.

Another idea to display the extra information was to allow the user to
select a node they want to see and that node would expand to display any
extra information. However, expanding the selected node would mean the
call tree would need to be re-computed and redrawn each time a node is
selected.

Scrolling may be enabled in the different frames if the information can’t
all fit into the given space.

9

Chapter 4

Research

This chapter describes the research I have done for this project. Each section
includes research on different areas and topics which helped me to under-
stand the project and get an idea of how to carry out the final implementa-
tion. Each section includes explanations on a project or framework which I
will be using. Individual classes will be discussed further in the next chapter.

4.1 Distributed Service Profiler

The first step of the project involved me looking into the source code of the
existing profiler to find out how it works. This is essential as I will need to
eventually extend this to include the database call interceptor.

A ServiceProfilerAgent(MBean) is used to send notifications to the pro-
filer. This class is an MBean which allows several of its attributes and meth-
ods to be exposed. Two particular methods which are useful are the sendEn-
tryNotification and sendExitNotification methods. These methods are uses
to emit a notification which the Distributed Service Profiler can use. These
notifications contain the information on the method calls such as the method
name, time taken and size.

The JXMClient class in the profiler is used to query the server for the Ser-
viceProfilerAgent MBean. When the correct MBean is found, a Notification-
Listener is added to the ClientListener class. The profiler uses a Notification-
Listener from the javax.management package. This listener is notified when
a JMX (Java Management Extensions) notification occurs. When a notifica-
tion is received, the ClientListener will pass this on to the ProfilingManager,
where the majority of the work is done.

The profiler then takes this Notification object to extract the message from
it. The message is then split so information can be extracted. This informa-
tion includes the method name, the service name, argument bytes, return

10

bytes and the time taken. The hit count increments every time the same pro-
cess is called.

All of this information is passed to the MethodCallContainer class which
helps store this information for each method call. A DefaultMutableTreeN-
ode containing a MethodCallContainer is created for each method call. The
ResultsPanel class can then grab the information from each call to create a
method call node and paint this component onto the profiler window. To
keep track of which service calls which method, a method setInvokingIn-
dex(i) is used to set which connection invoked that method, this is essential
in building up the method call tree.

There is of course a lot of other processing involved in connecting to the
services and building up this method call tree. However, the main technique
used to get the information from these methods is described above. This is
the main part of the program which I will be dealing with and will be using
ideas from this to create my part. To try to keep things consistent, I would
like to have my interceptor part integrated with the profiler and use a similar
design.

4.2 Hibernate

Historically, Hibernate facilitated the storage and retrieval of Java domain
objects via Object/Relational Mapping. Today, Hibernate is a collection of
related projects enabling developers to utilize POJO-style domain models in
their applications in ways extending well beyond Object/Relational Map-
ping [4].

Hibernate is free and provides a framework to map Java classes to database
tables. This means the object-oriented classes of a Java program can be mapped
to traditional relational model databases. This makes it possible to map Java
data types to SQL data types. Hibernate can also be used for database queries
by generating the SQL code. This makes it easier for developers as they don’t
have to manually change the data types and can easily create applications
which are supported with SQL databases.

In the case of the services created by Kiwiplan, Hibernate also helps to
create query strings when database calls are made and translate these to tra-
ditional MySQL queries.

4.3 Hibernate Interceptor

The Hibernate Interceptor is an interface in Hibernate which can be used in
applications to react to certain events occurring inside Hibernate. This is the

11

main tool I looked into and is what I will be using to extend the Distributed
Service Profiler as it can be used to intercept calls made to a database.

The Hibernate Interceptor can be configured with an application and a
database to intercept calls made to that database by the application. There
can be two types of interceptors, global or session-scoped interceptors. Global
interceptors are application-scoped. This means that when an application has
several database sessions, the interceptor will affect objects in all sessions.
Session-scoped interceptors, like the name indicates, are configured for each
individual database session so they will only affect objects associated with
that particular session.

Once an interceptor is configured and created, it will be invoked every
time a insert, delete, update is made to the database. Methods in the intercep-
tor can be modified to do different things based on the query. For example,
if a user tries to insert an object into the database, the interceptor could be
created such that it will check the properties to be saved to see whether they
are valid. Another example could be for updates to the database, a log could
be kept so each update is recorded to keep track of changes in the database.

There are three interfaces related to Interceptors are available in Hiber-
nate, the Lifecycle and the Validatable interfaces and the Interceptor from
the org.hibernate package [5].

The Lifecycle interface is used to encapsulate an objects phases of its life-
cycle. Methods available from the Lifecycle interface include onLoad(), on-
Save(), onUpdate() and onDelete(). The Validatable interface only has a vali-
date() method which is called during save operations to check the validity of
the state of the object. The final Interceptor interface is what I am interested
in.

4.4 EmptyInterceptor

The Interceptor interface is part of the org.hibernate package and includes
over 15 methods. The EmptyInterceptor class implements the Interceptor in-
terface and it typically what developers extend to implement their own cus-
tomized interceptor. This allows the developer to implement only the nec-
essary methods. Methods implemented in the interceptor are automatically
invoked when a particular event occurs in the application.

A full list of the methods available from the Interceptor interface can be
found on the Interceptor API page [6]. The methods I will be using include
the onSave(), onDelete(), onLoad(), onFlushDirty(), afterTransactionBegin()
and afterTransactionCompletion() methods. The onSave(), onDelete(), on-
Load() and onFlushDirty() methods are invoked when query to the database
saves an object, deletes an object, reads an object data and updates an object

12

respectively. The afterTransactionBegin() and afterTransactionCompletion()
methods are invoked when a transaction begins and finishes so I will be us-
ing these methods to find the overall transaction time.

I know in Java there is a method System.currentTimeMillis() which return
the current system time in milliseconds. This can be used in the afterTrans-
actionBegin() and afterTransactionCompletion() methods and the difference
taken to get the transaction time in milliseconds.

For a Hibernate Interceptor to work there must be at least two xml files
to configure the interceptor. A hibernate.cfg.xml file is needed to configure
the session factory with properties. These properties include the connection
driver, URL, username and password and other properties which can set the
logged SQL to a formatted output. This file will also specify the mapping files
which are used to map the Java classes to the database tables. This mapping
file will be named [mappingClassName].hbm.xml and specify the attribute
names and types.

I chose to use this to create my final solution as it is fairly straightforward
to implement and can easily intercept database calls. It will take some work
to integrate it with the current profiler but using the Hibernate Interceptor
will make it easier to take care of the query interception part of the project. I
will be extending the EmptyInterceptor class as I will only need a few specific
methods and this will make it more flexible for me to choose which methods
to include and which to ignore.

4.5 Hibernate Event System

”If you have to react to particular events in your persistence layer, you can
also use the Hibernate3event architecture. The event system can be used in
addition, or as a replacement, for interceptors.” ??.

This would be an alternate way to intercept database queries. Event lis-
teners would be used instead to listen for events generated by the Hibernate
session. This implementation is considered the newer version of the intercep-
tors and can be more robust flexible in terms of events that can be listened to.
The event listeners have a different set of methods that can be implemented
compared to the interceptor, but overall they serve a similar purpose. Event
listeners are actually used in Hibernate to invoke any interceptors imple-
mented by developers.

I chose to use the interceptor for this project as it seems like the simpler
approach and has the methods I would need. Since the goal of this part of
the project is to simply intercept a database query and pass on any relevant
information, the simpler approach would be the preferred option. The event
system is simply an alternate design choice, one to keep in mind if any future

13

development and testing shows that the interceptor is too limited for the
application.

4.6 Logging

I also looked at how HQL (Hibernate query language) and SQL could be
logged. I found something called SLF4J (Simple Logging Facade for Java)
which serves as a simple facade or abstraction for various logging frame-
works [7]. SLF4J is what Hibernate uses for logging SQL. However, it should
have a binding framework such as Logback or Log4J.

I compared the difference between Logback and Log4J to see which bind-
ing I should use. Logback is basically the new version of Log4J and it seems
pretty straightforward to use. I initially decided to use Logback with my in-
terceptor. However, Kiwiplan typically uses Log4J so I decided to use Log4J
for my final logging interceptor to keep things consistent.

Log4j is a tool used by developers to output log statements so that prob-
lem areas can be located. Logging behaviour can be controlled by using
a configuration file and may be assigned to levels. The possible levels are
TRACE, DEBUG, INFO, WARN, ERROR and FATAL. Since these levels are
ordered, if the logging level is set to INFO, then log requests at or above this
level (INFO, WARN, ERROR and FATAL) will be enabled and the log state-
ments printed. Levels below the set logging level (in this case, TRACE and
DEBUG) will be disabled and log statements of that level are not printed.

I am currently unsure about logging for HQL; it is hard to find sources
which describe how HQL can be logged. Most articles I found were for SQL
logging. I will need to do further research for this.

4.7 Hibernate Query Language (HQL)

I have used SQL queries before but I had no previous experience with HQL
so I had to do some research on that. HQL is similar to SQL but is fully
object-oriented and understands notions like inheritance, polymorphism and
association [8]. It is used to write queries which are similar to SQL queries
but for Hibernate objects. I found that HQL is much easier to use than SQL.
A simple example of HQL is ”from Contact”. This short query will return
all instances of the class Contact. Compared to SQL, where the same query
would need to be ”Select * from Contact”.

HQL also has a feature called criteria, which can be used to set restrictions
to a query to select specific rows or attributes from a table. This makes it
similar to object-oriented programming and can help make code neater when

14

using long and complex queries which would require many ”where” and join
conditions if traditional SQL was used.

4.8 Java MBeans

MBeans are managed beans, Java objects that represent resources to be man-
aged, and have a management interface [9]. MBeans represents objects or
resources in Java and implement getter and setter methods for attributes and
properties of that object. The special management interface associated with
an MBean allows access to attributes, operations that can be invoked, noti-
fications that can be emitted and constructors for that object. There are also
five types of MBeans - Standard, Dynamic, Open, Model and MXBeans.

Using the class name plus ”MBean” is the typical format of creating an
MBean to expose certain attributes and methods. This is how the Standard
MBean is created. Dynamic MBeans can publish a description for each of its
exposed methods (compared to Standard MBeans which can’t). This makes
it easier for users as they can see what existing MBeans can use and do. The
Open and Model type MBeans are both dynamic types. Open MBeans follow
some conventions, making them less powerful and convenient but portable.
Model MBeans are not done in a typical Java class, but instead created by
using a Model MBean from the JMX and modifying it. Lastly, the MXBean
is a special type, and references a predefined set of data types. This makes
them usable by any client as no special configuration is required.

MBeans can be used to invoke operations on the application being mon-
itored, as well as receive notifications about events. This is what the current
Distributed Service Profiler does. A property change listener can also be im-
plemented to detect changes made to a property of an object.

I will be using the Standard MBean, as I will only need to use it for com-
munication with the profiler and the ability to emit notifications. The Stan-
dard type will be the simplest one to use and is what the ServiceProfilerA-
gent(MBean) extends. Using the same type means I can use a similar format
and keep the design consistent with the existing profiler.

To actually be able to use an MBean, it must first be registered to an
MBeanServer. This is a repository of MBeans which a client can later browse.
To be registered, MBeans must be given a unique object name. This allows
clients to be able to query the server to find a specific MBean by supplying
some criteria such as an object name.

15

4.9 Notifications

Once an MBean is created and registered, it can be used to emit notifications.
Notifications can be used to signal many things such as changes, events or
problems. Notifications all contain a source (the object name of the MBean)
and a sequence number (used to order notifications from the same source).
They can also contain a timestamp and a message (which is simply a String
type). They can also contain other attributes depending on the type of no-
tification they are. There are 7 main types - AttributeChangeNotification,
JMXConnectionNotification, MBeanServerNotification, MonitorNotification,
RelationNotification, TimerAlarmClockNotification and TimerNotification.

For an MBean to emit a notification, it must implement the NotificationE-
mitter interface or extend NotifcationBroadcastSupport. A notification in-
stance can then be created with the appropriate parameters and the method
sendNotification() can be used to emit the notification.

The client application can then use a class to implement the Notifica-
tionListener and use the handleNotification() method to receive notifications.
Once a notification listener is added by calling addNotificationListener with
the client listener and specific MBean on the MBeanServer, the client can start
receiving notifications from the MBean. The handleNotification() method
will then be invoked every time a notification is emitted from the MBean.

4.10 JConsole

”JConsole is a JMX-compliant GUI tool that connects to a running JVM, which
started with the management agent.” [10]. It includes a graphical interface to
allow easy monitoring of the Java Virtual Machine (JVM) and both local and
remote applications.

Once connected to a specific process, there are six tabs in the interface to
look at different information from that process - Overview, Memory, Threads,
Classes, VM Summary and MBeans. The MBeans tab can be used to look at
the information on all MBeans registered in the target JVM and allows access
to the full set of the platform instructmentation. Information on each MBean
can be displayed such as the exposed attributes and operations as well as
allowing the user to use the MBean to emit a notification. Exposed opera-
tions will allow the user to invoke methods to test how they run. Emitted
notifications can also be stored for users to see.

This MBean information page is what I used when testing my Logger-
ManagerMBean (described in a later chapter). It is extremely helpful in see-
ing whether the MBeans are being registered and emitting notifications cor-
rectly.

16

4.11 Database Changes Logger

The Database Changes Logger is part of the Hibernate project and is a tool
developed another BTech student a few years ago used to record changes to
Hibernate databases used in Kiwiplan services. It uses JMX MBeans and the
Hibernate Interceptor to intercept database queries and is similar to what I
need to create to extend to the Distributed Service Profiler.

The interceptor in this changes logger implements onSave(), onDelete()
and onFlushDirty() and writes the changes to a log. The logging level can
be changed to log a different amount of detail for each query (NONE, BA-
SIC and FULL). This changes logger also uses LoggerManager class which
manages the interceptor and creates it.

This changes logger will use configurations files to configure Hibernate
if they are provided, otherwise default values are used. The logging levels
to choose from are NONE, BASIC and FULL. If NONE is used, nothing will
be logged. BASIC means all save and delete operations will log a single line
with the username, action, objects id and the objects toString() method result.
Updates are only logged if there were actual changes. At the FULL logging
level, all properties will be shown for save and delete operations and for
updates, the object will be logged even if there are no changes made to it.

This changes logger uses the service name passed into the LoggingMan-
ager to associate each different logging manager with a particular service.
This service name is then used to create service properties class which stores
the properties for a service and provides methods for retrieving them. This
class can then be used by the interceptor.

The LoggingManager class registers itself as an MBean, this means the
logging level can be changed after initialisation using a JMX management
application. Logged messages will be written to the appropriate log, speci-
fied by the configurations in the log4j.properties or log4.xml file.

4.12 Jini API

Jini API is one of the projects that the service profiler requires to run. There
are three particular classes in this project that the service needs which I looked
into - MBeanCreator, ServiceProfilerAgent and ServiceProfilerAgentMBean.
One of the things that confused me as to how the profiler works was that I
initially though the profiler was only contained in a single project. Looking
into these three classes helped me to understand how the profiler runs and
where the notifications came from.

The ServiceProfilerAgent(MBean) is the class used to emit notifications
containing the method call information. These notifications are then used by

17

the profiler to build up the method call tree. The MBeanCreator is used to
connect to the service using the specified port number. A ServiceProfilerA-
gent(MBean) is then created and registered to a specific MBeanServer for the
profiler to find.

4.13 Maven

”Apache Maven is a software project management and comprehension tool.
Based on the concept of a project object model (POM), Maven can manage
a project’s build, reporting and documentation from a central piece of infor-
mation.” [11]. It helps in providing a uniform build system as well as quality
project information. It can be used for any Java-based project.

Maven is the tool that Kiwiplan uses to build and manage Java projects.
It allows a project to be imported easily into Eclipse and makes building the
project simple as dependencies are managed. Since this was all set up, I
could simply run Maven from shell to build a project and get a jar file from
the build.

18

Chapter 5

Design/Implementation

This chapter describes what I have actually implemented, including exper-
iments I did to test parts of the code, the classes which will be combined
with the Distrributed Service Profiler and any modifcations made to existing
classes.

5.1 Simple Hibernate Interceptor

To experiment with a Hibernate Interceptor without having to integrate it
with the service profiler, I implemented a simple Interceptor class which
extends the EmptyInterceptor. In this Interceptor, I implemented the on-
Save(), onDelete(), onLoad(), onFlushDirty(), afterTransactionBegin() and af-
terTransactionCompletion() methods. At first, the onSave(), onDelete(), on-
Load(), onFlushDirty() methods would only print out whether it was saving,
deleting, updating or loading an object. This was just to let me see whether
the interceptor was working and whether the methods were being invoked
at the right time.

I also created the hibernate.cfg.xml and mapping file to configure the in-
terceptor and map it to the MySQL table. To test this interceptor, I created a
Contact class in Java which has attributes id, first name, last name and email.
I also created a main class HibernateTest which configures the session factory
and creates an application-scoped Interceptor. In here, I created a few Con-
tact objects and saved, deleted, updated and read them from the database to
check if the Interceptor worked.

The hibenate.cfg.xml file contains information on the properties needed
to configure the session factory for Hibernate to use. These properties in-
clude the connection driver class, connection URL, dialect, connection user-
name and password and the names of the mapping files. There can be a lot

19

of other properties to configure the session factory but many of them are not
necessary for the program to work. The properties I used in this simple in-
terceptor test were the minimal amount needed to get it working. Once I
start to integrate the real interceptor with the Distributed Service Profiler, I
will need a lot more information. I expect most of this information can be
obtained from Kiwiplan as they already use Hibernate for their code.

The same can be said for the mapping files. Since mapping files include
information to map the attributes from a Java class to a database table, I
would expect I can get this information from Kiwiplan otherwise it would
be extremely difficult for me to create one from scratch. These were some of
the initial problem I encountered when implementation fo the actual exten-
sion started. These issues will be discussed more in section 5.3.

I also added a SLF4J with Logback into this application and tried the dif-
ferent logging levels. I used this in the Interceptor class to print out when a
method is invoked as well the entity class (in this case, Contact) and the id.

Up until this point, the afterTransactionBegin() and afterTransactionCom-
pletion() methods were empty. I added a System.currentTimeMillis() in after-
TransactionBegin() and stored this in a global variable. When afterTransac-
tionCompletion() is invoked, System.currentTimeMillis() is called again and
the difference is taken between the returned value and the stored time from
the beginning of the transaction. This is the total transaction time in millisec-
onds.

Once the Interceptor was working with the saves and deletes, I decided
to test it with some more complicated queries. I had only been using ses-
sion.save(c) or session.delete(c) to test it so far. I used some HQL and SQL
queries to select certain contacts from the Contact table. This included us-
ing the HQL criteria and setting parameters into the queries to run on the
database. I also created traditional SQL query strings. Both were fine in run-
ning on the database and the interceptor successfully intercepts the queries
and extracts the information from the queries.

5.2 PersistenceWrapper

The PersistenceWrapper class is a generic interface used by the services for
persistence operations. This class can be used to configure the Hibernate ses-
sions, load properties and mapping files and many other operations. There
are three getInstance methods which returns a singleton of the PersistenceWrap-
per. These methods will create a configuration and set any required proper-
ties to it. One of these getInstance methods takes in a databaseName, Con-
figuration and serviceName as parameters. Only when this getInstance is
used will a DBChangesLoggerManager be created and logging set up for the

20

DBChangesLogger application. When this getInstance method is called, an
interceptor will be set for the configuration using the getInterceptor method
from the DBChangesLoggerManager.

A rough overview of how the PersistenceWrapper works is that it creates
a session using the session factory. Any Hibernate mapping schemas are read
in and added to the configuration and mappings (list of mappings to avoid
duplicates). The session factory is re-created after any new mappings are
added. A transaction can be started using the given session and Hibernate
properties files can also be loaded. These are the main methods required to
start the session and perform database queries.

I had started creating a PersistenceWrapper class with only the specific
methods I would need for my project. I was also confused as to where I
needed to create the PersistenceWrapper in the profiler. I had originally
wanted to intialise it when a service is first connected. However, I later found
out that the services actually have a PersistenceWrapper in their constructor
and I could simply make changes to the existing one to account for my ser-
vice profiler interceptor.

5.3 LoggerInterceptor for Profiler

This section is split into two parts as the implementation for this class was
later revised and changed to create a better overall design of the project. The
first section will discuss the initial implementation as well as the testing and
reasons that led to the design change. The second part will explain how the
final version was implemented.

5.3.1 Original

It was good that I had created the simple Interceptor for testing as it allowed
me to understand how the Hibernate interceptor works and reuse the same
format and some of the code from that for the actual LoggingInterceptor
class.

The LoggingInterceptor is initialised with a service name and the Log-
gingInterceptor class has the onSave(), onDelete(), onLoad(), onFlushDirty(),
afterTransactionBegin() and afterTransactionCompletion() methods.

I also included methods in the LoggingInterceptor which are called when
the onSave(), onDelete(), onLoad() and onFlushDirty() methods are invoked.
These methods take in the parameters passed into the methods which have
information on the entity being passed to the database for saving, deleting,
reading or updating. This information can be used in interceptors to validate
or change the incoming information before passing it on. I simply take these

21

parameters to format them and print out the entity being changed and its
properties.

As mentioned earlier, I was concerned about how to obtain the map-
ping and configuration files need to use the interceptor. All of this infor-
mation is in the PersistenceWrapper so that made things a lot simpler. To
make sure I had the interceptor working properly, I took the LoggerInter-
ceptor class and injected it into the PersistenceWrapper for all services to
use. I changed the code in the PersistenceWrapper to use this interceptor
instead of the DBChangesLoggerManager and Interceptor. I ran into some
problems trying to get the interceptor working with the services and after
some looking around, it turned out that the services were calling a different
getInstance method. I simply set my interceptor in the configuration of this
other getInstance method and that fixed the problem. I launched the services
and used to the LoggerInterceptor to print out intercepted queries. Figure 5.1
shows some sample output from the interceptor, and it is clear that database
queries are successfully intercepted. This was also helpful in seeing what
kind of information is being captured and what information I should pass
onto the profiler.

Once the LoggerInterceptor was successfully working, I integrated it with
the LoggerManager. The LoggerManager is used to initialise the LoggerIn-
terceptor and is passed as one of the parameters into the LoggerInterceptor
constructor. The LoggerInterceptor can then use this to get the service name
and logging status (to switch logging on and off).

An important part of this project is to be able to match the database calls
with the original service method calls. This is essential in order to be able to
integrate the information from the interceptor with the profiler to build up an
accurate call tree. There were several alternate approaches do this. The first
was to use the stack trace. However, there was no guarantee this would go
as far back as the service calls. If this was true, the method matching would
need to be done in another place (not in LoggerInterceptor). One idea was to
use the PersistenceWrapper. The stack trace approach would be the simplest
as it could all be done in a single class without the need to use something like
the PersistenceWrapper, processing it and then passing the information back
to the LoggerInterceptor.

The first thing I needed to do was check the stack trace to see what kind
of information was in there. To get the stack trace,
Thread.currentThread().getStackTrace() can be used to get an array of Stack-
TraceElements. Each element in this array represents a single stack frame
and is a method invocation containing the declaring class, method name, file
name and line number. This method was called in the LoggerInterceptors
startQuery() method, which is called every time a database call is intercepted.

22

Figure 5.1: Intercepted queries from LoggerInterceptor

As shown in figure 5.2, it can be seen that the stack trace does in fact
go back to the original service method call. I have removed some of the
output to save space, they were simply methods used by Hibernate such as
event listeners which is done for interceptors to work. Typically the methods
invoked by classes from the Hibernate package are helper methods done in
the background and not explicit calls done in the services. As we move down
the stack trace, it can be seen that methods from the PCS service (one of the
services created by Kiwiplan) is making calls (runServiceUpgrade, runTask
etc) that lead to the database query.

5.3.2 Revised

To keep the dependencies between different projects consistent, the Logger-
Interceptor and LoggerManager (explained in section 5.4) were modified.
The same methods and concepts are used for the actual interception of the
database calls and communication with the profiler.

23

Previously, the LoggerInterceptor required an instance of the LoggerMan-
ager as a parameter in the constructor. This was used to initialise attributes
in the LoggerInterceptor such as the service name and logging status. An
instance of the LoggingManager is also stored in the LoggerInterceptor to
use when emitting notifications to the profiler. As these two classes had to
be in two different projects - LoggerInterceptor needed PersistenceWrapper
and LoggerManager required MBeanCreator (section 5.7) - it caused some
dependency issues. These other classes will be discussed in their respective
sections.

The main change the LoggerInterceptor had was that the dependency be-
tween it and the LoggerManager was reversed. The LoggerInterceptor was
modified so a LoggerManager was not needed for initialisation. Instead, a
call is made to create a new LoggerManager inside the constructor and this
instance is the one used to send the notifications. This meant no dependen-
cies needed to be changed as this Hibernate project already had a depen-
dency on the Jini API.

The only other change needed to make this work was in the PersistenceWrap-
per. Instead of creating the LoggerManager and using that to create the
LoggerInterceptor, the LoggerInterceptor is created straight from the Persis-
tenceWrapper and set to the configuration.

5.4 LoggerManager for Profiler

This section is also divided into two parts and structured like Section 5.3.

5.4.1 Original

Using the format from the DBChangesLogger project, I created a Logger-
Manager class and a LoggerManagerMBean class. I initially had just the at-
tributes serviceName and loggingStatus exposed. The loggingStatus is sim-
ply a Boolean variable used to switch logging on and off. The serviceName
will help to associate the interceptor with a specific service.

The LoggerManager is initialised by passing in a serviceName and a Per-
sistenceWrapper instance. To set the interceptor for the configuration, the
getInterceptor method can be called. This will actually create a WrapperIn-
terceptor class before creating a LoggerInterceptor class. They both extend
the EmptyInterceptor and implement the same methods (such as onSave,
onDelete etc.). The WrapperInterceptor will call the methods in the Logger-
Interceptor when database queries are intercepted. This is to prevent any
logging errors from halting interaction with the database.

24

To test out the LoggerManager(MBean), I added a simple main method so
that it could run as a standalone application without the PersistenceWrapper.
I could then run the application and use JConsole to check that I had the
MBean registering properly and was able to switch logging on and off.

After some testing and more research, I needed the LoggerManager to be
able to send notifications to the profiler where the query information could
be used and displayed in the call tree. I implemented two methods - sendEn-
tryNotification and sendExitNotification - which creates an AttributeChangeNo-
tification and emits it for the profiler to grab. Inside this notification was only
the method name, time stamp and message tag. The message tag is simple
a string to track whether it is the start of a query or the end. Again I used
JConsole to check whether the notifications were emitting properly.

For the LoggerManager to actually be able to communicate with the pro-
filer, the profiler must be able to find the LoggerManager MBean to regis-
ter a listener. However, I ran into some problems here where the profiler
was unable to find the correct MBean, despite the fact that the LoggerMan-
ager(MBean) had been successfully registered and I was able to see it using
JConsole. After some research, it turned out that because the two applica-
tions were separate (LoggerManager in one project, service profiler as an-
other), it meant they were in different JVMs. As I was only using Manage-
mentFactory.getPlatformMBeanServer() and registering the LoggerManager
to this MBeanServer, the profiler was unable to find it. To fix this, I needed
to register the MBean in the same place as the ServiceProfilerAgent. This
would make it easier for the profiler to find as they would appear on the
same MBeanServer.

Figure 5.3 shows a screenshot of the JConsole application. The MBean
tab is open and it can be seen that the LoggerManager(MBean) has been suc-
cessful registered into the MBeanServer. On the left hand side, the attributes
and operations of the MBean is listed. Currently displayed is the informa-
tion page, which shows the unique object name of the MBean, class and a
short description. The object name is the one given to the MBean when being
registered and is what will help the profiler find the correct MBean.

As the MBeanCreator class is used to create and register the ServiceProfil-
erAgent(MBean), I needed to use the same MBeanServer created in that class.
Once I had the LoggerManager using this class to register itself, the profiler
was able to find the LoggerManager(MBean) and handle notifications emit-
ted from it.

With the profiler successfully catching notifications emitted by the Log-
gerManager, the next step was to send information about the queries to the
profiler. This was done in the LoggerInterceptor and the query information,
including the stack trace was sent to the profiler using the sendEntryNotifi-

25

cation method (as described earlier).

5.4.2 Revised

Since the LoggerInterceptor was now initialising the LoggerManager (not the
other way around), some small changes needed to be made to the Logger-
Manager class. For one, the method getInterceptor() was no longer needed.
This was the method the PersistenceWrapper initially called in order to get
an interceptor to set to the configuration.

5.5 JMXClient Modifications

The JMXClient class is used by the profiler whenever the user wishes to
connect to a service. This class connects to the JMX server and queries the
MBeanServer to find the ServiceProfilerAgent(MBean). Once found, a notifi-
cation listener is added to the ClientListener (section 5.6) to receive emitted
notifications. This is the class in which I added the connection with the Log-
gerManager(MBean).

As mentioned earlier, I ran into some problems with this part as the pro-
filer had trouble find the LoggerManager MBean. This is because I had
originally been using LoggerManager in the Hibernate project and regis-
tering it with the MBeanServer obtained from the method getPlatformM-
BeanServer(). In the JMXClient, I tried to find the MBean by calling get-
PlatformMBeanServer() and looking in that. While the MBean was register-
ing correctly, it was not showing up on the profiler side. I found that this
was due to the classes being in different applications, and essentially differ-
ent JVMs, therefore different MBeanServers. This is why the LoggerMan-
ager(MBean) had to be moved to the Jini API project and be registered to the
same MBeanServer as the SerivceProfilerAgent.

After the classes had been rearranged, I could then use the same MBeanServer
found in the JMXClient and find the LoggerManager(MBean) by supplying
an object name. With this done, another notification listener was added to
the ClientListener, but with a specific handback string - ”loggerManager”.
This is so the ClientListener is able to differentiate between the notifications
received from the original ServiceProfilerAgent and the LoggerManager. I
had initially considered creating a new class, similar to ClientListener, for
the LoggerManager but combining it with the existing listener was a better
design choice as the implementation did not need to be changed.

26

5.6 ClientListener Modifications

The ClientListener class implements the NotificationListener to receive the
notifications sent by the ServiceProfilerAgent(MBean). It contained a single
method - handleNotification - which is invoked whenever a notification is
received. Once invoked, it will pass the notification along with the associated
connection index onto the ProfilingManager for processing in order to build
up the method call tree.

The handleNotification() method takes in two parameters - the notifi-
cation and a handback. The handback can be defined for the listener and
MBean when the addNotificationListener() method is called. This was de-
fined as null for the ServiceProfilerAgent but as I needed to be able to differ-
entiate between notifications from the two MBeans, I gave the LoggerMan-
ager(MBean) a handback ”loggerManager”. Again, the connection index is
passed along with the database query to the ProfilingManager as this will be
needed when building up the method call tree.

When handleNotification() is invoked, I included a check for the hand-
back string and based on that, passed it onto the ProfilingManager with dif-
ferent methods.

5.7 MBeanCreator Modifications

The MBeanCreator class is a part of the Jini API project and is used to create
and register the ServiceProfilerAgent(MBean). It first connects to the service
using the provided port number and then creates an MBeanServer (if one
hasn’t been defined) and registers the MBean to it.

The only change needed to this class was an extra method for registering
the LoggerManager(MBean). Since the LoggerManager was initialised by
the LoggerInterceptor, the only thing needed was the same instance of the
MBeanServer. The LoggerManager can then simply call the method upon
initialisation, and pass itself and an appropriate object name along with the
method. In MBeanCreator, a MBeanServer will be created if it hasn’t already,
and the method mBeanServer.registerMBean(loggerManager, mbeanName)
can be used.

5.8 ProfilingManager Modifications

The ProfilingManager class is where the majority of the work in the profiler is
done. This class is responsible for processing the information received from
the service method calls, creating tree nodes for each one and then building

27

up a method call tree. It first takes the notification from the ServiceProfiler-
Agent and checks the message tag to see what kind of method it was. This
could be invoked, called, returned or completed and helps to build up the
method call tree. Depending on the message tag, the notification will then
be passed on to a different method and processed. This will involve creating
tree nodes containing a MethodCallContainer with all the method informa-
tion inside.

To integrate the database information, I created a new method queryNoti-
ficationReceived() which is called by the ClientListener whenever a database
query is intercepted. In here, the notification can be passed onto different
methods depending on the message tag - queryStart or queryEnd. With the
stack trace contained in the notification, the matching can be done to find the
initial service method call that invoked the database call.

Since the current profiler only displays information about the method
calls between the services, the database calls would original from the leaf
nodes of the call tree. This is where some methods have a much longer run-
time, since it causes calls to the database to be made, that time is included in
the service method. As the current profiler stores each call node in a list, with
one of them being the open nodes, I can simply use that list and compare the
method names of each node with the method names in the stack trace.

5.9 Matching Service Calls with Database Queries

As explained in the previous section, the stack trace was used to match the
methods from the list of open nodes to the method names in the stack trace in
order to find the corresponding service method call to the intercepted query.
Before this was implemented, it was uncertain whether that woudl be an
appropriate approach as the stack trace may not have contained all the infor-
mation and gone back to the point of the original method call.

The basic flow of the database calls is that a service will invoke a database
call by using some HQL statement. This HQL in the PersistenceWrapper uses
Hibernate to convert the method into a traditional SQL statement and then
passed onto the database. The alternative approach that could have been
used would have involved using the PerisistenceWrapper and grabbing the
information from the HQL to find the original service method. While this
approach would definitely work, it would have involved a lot more diffi-
cult compared to using the stack trace. The intercepted query would need to
be used along with PersistenceWrapper and after being processed, the infor-
mation would need to be passed back through the LoggerInterceptor to the
profiler.

28

java.lang.Thread
getStackTrace
kiwiplan.persistence.servicelogger.LoggerInterceptor
startQuery
kiwiplan.persistence.servicelogger.LoggerInterceptor
onFlushDirty
...
org.hibernate.event.def.DefaultFlushEntityEventListener
handleInterception
...
org.hibernate.transaction.JDBCTransaction
commit
kiwiplan.persistence.PersistenceHelper
update
kiwiplan.pcs.dao.HibernateLineupEntryDAO
store
kiwiplan.pcs.service.upgrader
.StepEstimatedQuantityCalculationUpgradeTask
runTask
kiwiplan.pcs.service.upgrader.PcsServiceUpgraderImpl
runServiceUpgrade
kiwiplan.pcs.service.PcsServiceFactory
createAndrunPcsServiceUpgrader
kiwiplan.pcs.service.PcsServiceFactory
createServiceImpl
kiwiplan.pcs.service.PcsServiceFactory
createServiceImpl
...

Figure 5.2: Example of stack trace using getClassName and getMethodName

29

Figure 5.3: JConsole View of MBean

30

Chapter 6

Final Solution

This chapter gives an overview of the final solution and future work.

6.1 Solution Overview

The final solution of the project will follow a similar design of the current
profiler. Figure 6.1 shows a high level view of the solution, and how it fits
in with the existing profiler. The red boxes show the main changes made to
the overall profiler. When one service makes a method call to another, that
method is intercepted existing profiler. When a database query is made, it
will be intercepted in the Hibernate project and passed onto the JIni project.
In here is the MBean used to communicate with the profiler, and a notification
can be sent containing the query information.

As the original Distributed Service Profiler has a dependency on another
project (Jini API), I ended up modifying my original design to keep depen-
dencies consistent. My original solution of the interceptor portion required
classes from both the Hibernate (Kiwiplan project, not the framework) and
Jini API. As explained in earlier chapters of this report, the LoggerMan-
ager(MBean) must be registered to the MBeanServer and the Interceptor must
use the PersistenceWrapper to be configured with the services. As there was
already a dependency on the Jini API from the Hibernate project, this created
a circular dependency, something that could cause problems with the other
projects in Kiwiplan.

The cause of this circular dependency was that the LoggerInterceptor
needed the PersistenceWrapper (Hibernate), the LoggerManager needed the
MBeanCreator (Jini API) but they also needed each other. My initial idea to
solve the errors I ran into while building the solution was to add a depen-
dency into the Jini API to use the Hibernate project. While this helped me

31

Figure 6.1: Solution Overview

get the project running without errors, it would affect the existing projects
Kiwiplan develops once committed to the system.

To fix this dependency problem, I changed the way the LoggerInterceptor
and LoggerManager were created. My initial approach followed the design
of the Hibernate project and had the PersistenceWrapper create an instance
of the LoggerManager, which would then create an instance of the LoggerIn-
terceptor. Since these two classes had to be placed in different projects - the
interceptor in Hibernate and manager in Jini API, I switched the way they
were initialized. As the LoggerInterceptor uses the LoggerManager(MBean)
to emit notifications, there was no need for the LoggerManager to have an in-
stance of the LoggerInterceptor. The new solution has the PersistenceWrap-
per create the LoggerInterceptor (both in Hibernate), which then creates an
instance of the LoggerManager (in Jini API) for communication with the pro-
filer.

Figure 6.2 shows the final solution of this extension to the profiler. This
is a lower level view of the solution and shows the main classes used in each
stage. Each service is constructed with a PersistenceWrapper which will then
set an interceptor into the configuration. When the LoggerInterceptor is ini-
tialised, it will create an instance of LoggerManager. In this LoggerManager,
it will register itself on the MBeanServer using the class MBeanCreator - the

32

same class which is used by the profiler to create and register MBeans. This
will keep them registered on the same server, making it easier for the service
profiler to find. The profiler can then add a notification listener for the Log-
gerManager. When the profiler finds the LoggerManager(MBean), it will be
associated with the connection index from this instance of the ClientListener.
This will help to keep track of where the methods are intercepted from and
help with the later parts of the project where the database queries need to be
integrated with the service method calls. With this design, I did not need to
add any new dependencies to the projects.

Figure 6.2: Solution Overview - Low Level

The design of this solution is effective and addresses most of the require-
ments stated in chapter 3.2. It can successfully intercept calls made by the
services to the database and this was shown with the LoggerInterceptor test-
ing (figure 5.1). This was all done using the Hibernate interceptor and done
during runtime as the calls were made by the services. The stack trace of the
can then be used to do the matching between the intercepted database query
and the original service method calls.

This design also followed the original profiler design, using MBeans and

33

notifications to communicate and using the connection index to keep track
of the method calls. No changes were made to the original source code. I
only added new methods or sections to the source code, but no existing code
was modified or removed. This was to ensure the original profiler would still
work.

The requirements I did not manage to address were displaying the new
database calls and the extra specifications. This was due to the implementa-
tion part of the project being incomplete and is explained in the next section.

6.2 Future Work

Unfortunately, I did not complete all the implementation of the design so
there are still a few missing parts to this profiler extension. Currently, the
LoggerInterceptor is successfully configured with the services and able to
intercept the database queries made by those services. The profiler is also
able to query and find the LoggerManager(MBean) and listen for notifica-
tions emitted by the LoggerManager. This notification contains the stack
trace of that thread up to the point of query interception. The profiler can
then compare the current node of the service method calls with the methods
called in the stack trace to find which method is the cause of this database
query - something that is essential to build up the method call tree.

The parts which still need to be implemented include creating a node for
the database query. This could involve creating a new class which extends
the MethodCallContainer class in the profiler. The MethodCallContainer is
simply a class containing all the information from the method calls and is an
object contained inside each node of the call tree. The database query will
most likely contain some slightly different information so a new class will
need to be created. However, it will still be in a similar format so this old
class can be used as a basis for the query container.

Once this is done, the new database nodes will need to be integrated with
the existing call tree. As each method and database call has an associated con-
nection index (from the client listener) and method names will be matched
from the stack trace, it should not be too difficult to combine the database
nodes into the call tree. The way the nodes are drawn will need to be modi-
fied to account for the new database nodes.

The final part to implement, although is not too important, is to cre-
ate some form of switch on the display window to allow the user to turn
database interception on and off. As the LoggerInterceptor contains a Boolean
variable to keep track of the logging status, the modification will just need to
change this attribute. When set to false, no notifications are emitted by the
LoggerManager. One thing to note would be how the profiler deals with

34

not receiving any database notifications when this status is changed. This
would only cause problems if the new way of displaying the call tree re-
quired database nodes from the service method call leaf nodes.

Testing would also need to be done in order to iron out the bugs and find
out any limitations the extension has. This would also help to find any prob-
lem areas the current profiler has. I ran across some problems occasionally
connecting to the services and it would be useful to try address some of the
existing issues.

The optional requirements specified in chapter 3.2 could also be incor-
porated. These were mostly small changes to the original profile concerning
how the call tree is displayed. Since I did not complete the implementation of
the database section, I did not try to address these issues during this project.
More research into how to log HQL would also be beneficial. Logging SQL
was discussed in section 4.6 but as explained, logging HQL is more difficult
but is something that would be helpful for developers to see.

35

Chapter 7

Knowledge Gained

As this project was part of my final year of my degree, it was useful in teach-
ing new ideas. This chapter describes what I have gained from this project,
whether it was some specific concept or experience of working on an actual
project.

7.1 Knowledge on Various Frameworks/Tools

This project involved a lot of technologies and frameworks that I had never
used before. While this made the project itself quite challenging and the
progress slow at first, it was extremely helpful in teaching me a range of new
ideas and concepts.

Many of the tools used by Kiwiplan (such as Hibernate, Maven and even
Linux) were completely new for me. Working on this project allowed me
to use these tools and experiment with how they work to see how useful
they can be when developing. I would expect many software companies to
use similar tools when developing software, so this was a great chance to
become familiar with them before moving on to work in the industry.

This project also involved a lot of research in frameworks such as JMX,
MBeans and the Hibernate Interceptor. While I did not complete the profiler
extension, I did get to implement and use these packages and did a lot of
testing with smaller standalone applications. This gave me a chance to ex-
periment with how they work and understand how they can be useful for
Java projects.

36

7.2 Development Process/Work Environment

As all of my previous projects were done individually or in small groups (of
at most 4), it was very different working on a project that is a part of such a
large company. There are many issues to keep in mind such as how different
projects depend on each other and there can be many different versions to
work on.

As there can be many dependencies between projects, changes to one
could easily affect how another runs. This is very different to my previous
programs, where everything is kept together in one project and every project
is built individually. With this project, as I had to keep classes in different
projects to avoid changing any project dependencies, it often involved build-
ing one project to remove errors occurring in another.

Working on this project also allowed me to learn about the development
process in a software company. Kiwiplan is a large company, with many dif-
ferent services in development. Updates/patches are often created, making
newer versions of the projects. This means projects being worked on should
be updated through the repository. Again this is very different to how I usu-
ally implement something, so it was a great experience to see how companies
develop before going into the industry.

7.3 Eclipse Extensions

Even though Eclipse is the developing environment I have been using for the
past three years, I was able to learn a lot more about the functions it has. As
discussed previously, tools like Maven and the development process (using
the repository) were very new to me and I was able to see how Eclipse can
be used together with these ideas. Maven can be used to import and build
Java projects. A link can also be made to Eclipse to the repository. This can
be used to compare code written on the local computer with the code in the
repository to see what kind of changes have been made (and revert changes
if needed). Code can also be committed through Eclipse.

7.4 Documentation/Commenting

While commenting is something I’ve learned is important since my first year
of university, it was always something I did to keep track of what attributes/methods
are for or to comment out unnecessary code that I thought might be needed
at a later date. This was simply a way of helping me and not specifically
something for other people to use. I know that working in a company would

37

involve others looking my code so I usually comment my methods descrip-
tively.

During this project, I found that it was important to use the official Javadoc
style when describing attributes and methods. This allows proper API docu-
mentation to be generated and makes it possible to link descriptions between
classes using tags like @link or @param. It was also important to keep the
code clean and structured properly using specific code styles.

This is all very important as the code written by one person must be com-
mitted to the repository to allow others to continue with the project or do
testing with it. As I only completed a part of this project, another person will
be continuing this using the code I have written; therefore everything must
be described clearly.

7.5 Planning a Solution

Another important thing I learnt is the need to plan a solution. Typically
the programs I’ve written are small and although I have in mind a rough
plan of the solution, I didn’t need to come up with a development plan and
really get into the details. With this project, it was important to create a plan
of how I wanted to approach this problem and how I would solve it. This
involved creating a timeline of how I wanted the project to go (included in
earlier chapter). Although I was unable to follow through on the entire plan,
it was definitely helpful to set small milestones and goals to make the final
solution more achievable. Breaking the project down into smaller tasks also
made it easier to research and do what was needed for each part and slowly
build towards a final solution.

7.6 Time Management

Given that this project took place in the final year of my degree, it meant it
had to be done alongside my other courses as well. Since the papers I took
this year were all post-graduate courses, they were much more challenging
and involved a lot more work. This meant I had to manager my time care-
fully in order to get the work done for my courses as well as spending time
on this project every week.

7.7 Presentation/Report Skills

The requirements for this project, in terms of evaluation, included giving
three seminars and writing two reports. Working on this project definitely

38

helped me to develop my presentation skills as well as report writing skills.
Getting feedback from both my industry and academic mentors allowed me
to improve on areas where I was lacking and I am sure these skills will be
beneficial for me in the future.

39

Chapter 8

Conclusion

This chapter simply concludes the report and summarises the project.

8.1 Summary

The goal of this project was to create an extension for the existing Distributed
Service Profiler to integrate the database layer. The majority of this project
involved research into various concepts which helped to create the final so-
lution. The main areas I researched were Hibernate/Hibernate Interceptors,
JXM MBeans and the code from the original profiler. Using the hibernate
interceptor I was able to intercept queries made to the database and with
the use of MBeans, pass this intercepted information onto the existing pro-
filer. This was all tested with smaller standalone applications or using JCon-
sole. By using the stack trace from the intercepted query, the original service
method call can be found and used to integrate the new database information
with the current profiler services information.

Since I did not complete all the implementation, future work for this
project would involve displaying the new database calls in the call tree as
well as making some small changes to the GUI.

8.2 Conclusion

The solution I created is able to intercept database queries and communicate
with profiler and I managed to complete most of the specified requirements.
Even though I was unable to complete the all the implementation of the ex-
tension to the Distributed Service Profiler, this project was definitely a great
learning experience. I gained a lot of knowledge on various frameworks and
tools commonly used by software companies, something which I’m sure will

40

come in handy when I begin work in the industry. It was also great getting a
chance to see how a major company runs and the kind of things I will need
to know in the future.

8.3 Acknowledgments

I would like to thank everyone involved in this project - Dr Sathiamoorthy
Manoharan, Tim Walker, Dr Xinfeng Ye and Edward Chen. I am especially
grateful for my academic and industry mentors Xinfeng and Edward for their
feedback on presentations and reports and also advice given to me during
the year which helped to steer me in the right direction in order to do this
project.

41

Bibliography

[1] “Kiwiplan — contact info.” http://www.kiwiplan.com/site_
about/index.cfm?abbr=en, 2011.

[2] “Profiling (computer programming).” http://en.wikipedia.org/
wiki/Profiling_(computer_programming), 2011.

[3] “Java profiler - jprofiler.” http://www.ej-technologies.com/
products/jprofiler/overview.html, 2011.

[4] “Hibernate - jboss community.” http://www.hibernate.org/,
2011.

[5] Raja, “Introduction to interceptors in hibernate orm
framework.” http://www.javabeat.net/articles/
9-interceptors-in-hibernate-orm-framework-an-introducti-1.
html, 2011.

[6] “Interceptor (hibernate api documentation).” http://www.dil.
univ-mrs.fr/˜massat/docs/hibernate-3.1/api/org/
hibernate/Interceptor.html, 2011.

[7] “Simple logging facade for java (slf4j).” http://www.slf4j.org/,
2011.

[8] “Hql: The hibernate query language.” http://docs.jboss.org/
hibernate/core/3.3/reference/en/html/queryhql.html,
2011.

[9] “Overview of monitoring and management.” http://download.
oracle.com/javase/1.5.0/docs/guide/management/
overview.html, 2011.

[10] “Using jconsole to monitor applications.” http://java.sun.com/
developer/technicalArticles/J2SE/jconsole.html, 2011.

42

[11] “Apache maven project.” http://maven.apache.org/, 2011.

43

